Claude Code 上下文工程实战指南

基于Context Engineering理论和Vibe Coding的完整AI编程系统实施方法

Context Engineering AI编程系统

本指南专为JeecgBoot 3.8.2+框架设计,基于Context Engineering理论和CoT推理链,通过A2A (Agent-to-Agent)协议集成,实现从需求理解到代码生成的完整AI驱动开发生命周期。

核心技术理念

DeepWiki启发:可对话的智能文档系统

Context Engineering融合了DeepWiki的核心理念,将静态技术文档转化为可查询、可对话的活知识库。

核心特性

  • 交互式知识探索:自然语言查询复杂代码库
  • 深度代码理解:AI深度索引和语义检索
  • 上下文感知检索:基于语义理解的智能文档检索
  • 持续知识演进:文档随代码库自动更新

Context7启发:AI优先的上下文协议

集成Context7的MCP协议标准,为LLMs提供优化的文档上下文。

核心特性

  • MCP协议集成:Model Context Protocol工具链标准
  • 实时上下文管理:动态维护开发上下文
  • LLM优化文档:针对AI推理能力优化的格式
  • 跨工具协作:支持多种AI编程工具无缝集成

7-Agent推理协作链

Agent架构设计

agent-1 (Context基线师): Context基线建立 + 领域知识构建
agent-2 (需求推理师): EARS需求分析 + BDD场景设计 + CoT业务推理
agent-3 (设计思考师): 需求可视化 + 交互设计推理 + 原型生成
agent-4 (架构推理师): 技术架构CoT推理 + 设计决策链 + 组件设计
agent-5 (POC验证师): POC场景开发 + 技术验证 + 风险评估
agent-6 (实施推理师): 任务分解CoT + 代码生成策略 + 实施推理
agent-7 (验证推理师): 测试策略推理 + 质量保证CoT + 验证设计

详细实施步骤

第一步:环境配置

1.1 MCP Server环境配置

# 克隆superdesign MCP Server项目
git clone https://github.com/jonthebeef/superdesign-mcp-claude-code.git

# 进入项目目录
cd superdesign-mcp-claude-code

# 安装依赖
npm install

# 构建项目
npm run build

# 配置Claude Code MCP服务
claude mcp add superdesign "node /path/to/superdesign-mcp-claude-code/dist/index.js"

# 验证MCP服务状态
claude mcp list

1.2 项目结构初始化

# 创建AI编程目录结构
mkdir -p ContextDev/{agents,templates,AIGC,CONTEXT-KNOWLEDGE}

# 创建模板子目录
mkdir -p ContextDev/templates/{01-baseline,02-requirements,03-prototype,04-architecture,05-poc,06-development,07-testing}

# 创建存储目录
mkdir -p AIGC/context_engineering
mkdir -p CONTEXT-KNOWLEDGE/{domain-knowledge,reasoning-patterns}

第二步:Context Engineering初始化

2.1 建立Context基线

创建 AIGC/context_base_[SYSTEM].yaml

# Context基线文档
project_info:
  system_code: "CRM"
  system_name: "客户关系管理系统"
  version: "1.0.0"
  framework: "JeecgBoot 3.8.2"

tech_stack:
  backend:
    - "Spring Boot 3.2.0"
    - "JeecgBoot 3.8.2"
    - "MySQL 8.0"
    - "Redis 7.0"
  frontend:
    - "Vue 3.4.0"
    - "Ant Design Vue 4.0"
    - "TypeScript 5.0"

domain_knowledge:
  business_entities:
    - name: "客户信息"
      attributes: ["姓名", "联系方式", "会员等级", "注册时间"]
      relationships:
        - target: "订单"
          type: "一对多"
          reasoning: "一个客户可以有多个订单"
    - name: "订单信息"
      attributes: ["订单号", "客户ID", "商品信息", "金额", "状态"]
      relationships:
        - target: "客户"
          type: "多对一"
          reasoning: "多个订单属于一个客户"

reasoning_patterns:
  - pattern: "CRUD标准流程"
    applies_to: ["基础数据管理"]
    decision_chain:
      - "识别业务实体"
      - "确定字段类型和验证规则"
      - "生成标准CRUD接口"
    code_template: "entity-service-controller-vue"

2.2 建立推理基线

创建 AIGC/reasoning_baseline_[SYSTEM]_[MODULE].yaml

# 推理基线和上下文
execution_mode: "interactive"
project_context:
  system_code: "CRM"
  module_code: "CUSTOMER"
  current_stage: "需求分析"

reasoning_history:
  - stage: "项目初始化"
    key_decisions:
      - decision: "采用JeecgBoot框架"
        reasoning: "需要快速开发企业级应用"
        alternatives_considered: ["Spring Boot原生", "JeecgBoot", "若依框架"]
        chosen: "JeecgBoot"
        artifacts: ["项目初始化文档"]
    timestamp: "2025-01-27T10:00:00Z"

communication_protocol:
  agent_format: "YAML"
  context_sharing: "full"
  decision_tracing: "enabled"

quality_metrics:
  reasoning_depth: "high"
  decision_transparency: "required"
  artifact_completeness: "mandatory"

第三步:Agent定义和模板创建

3.1 创建Agent定义

创建 ContextDev/agents/baseline-manager.md

---
name: "Context基线师"
description: "负责建立Context基线和领域知识构建"
capabilities: ["context_engineering", "domain_modeling", "knowledge_management"]
tools: ["Read", "Write", "Edit", "Grep"]
stage: "baseline"
---

# Context基线师

## 主要职责
- 建立项目Context基线
- 构建领域知识图谱
- 维护推理模式库
- 管理文档-代码追溯关系

## 工作流程
1. 分析项目需求和技术约束
2. 构建领域知识模型
3. 建立推理基线文档
4. 定义Agent协作协议

## 输出产物
- context_base_[SYSTEM].yaml
- reasoning_baseline_[SYSTEM]_[MODULE].yaml
- domain-knowledge.yaml
- reasoning-patterns.yaml

## 决策标准
- 知识完整性:覆盖所有核心业务实体
- 推理一致性:保持逻辑链的连贯性
- 可追溯性:每个决策都有明确的推理依据

3.2 创建需求推理模板

创建 ContextDev/templates/02-requirements/requirement_template.yaml

# EARS需求推理模板
requirement_analysis:
  module_code: "{{MODULE_CODE}}"
  requirement_title: "{{REQUIREMENT_TITLE}}"
  analysis_date: "{{TIMESTAMP}}"

ears_requirements:
  - requirement_id: "REQ_001"
    title: "{{FEATURE_TITLE}}"
    specification: |
      WHEN <触发条件>
      IF <前置条件>
      THEN <系统应执行的操作>
      AND <预期的结果>

    acceptance_criteria:
      - "条件1:验证功能基本可用性"
      - "条件2:验证边界条件处理"
      - "条件3:验证异常情况处理"

    business_value: "{{BUSINESS_VALUE}}"
    priority: "{{PRIORITY_LEVEL}}"
    complexity: "{{COMPLEXITY_LEVEL}}"

bdd_scenarios:
  - scenario_id: "BDD_001"
    feature: "{{FEATURE_NAME}}"
    scenario: "{{SCENARIO_DESCRIPTION}}"

    given: "{{前置条件}}"
    when: "{{用户操作}}"
    then: "{{预期结果}}"
    and: "{{附加验证}}"

cot_reasoning:
  reasoning_chain:
    - step: "需求理解"
      reasoning: "{{需求理解推理}}"
      evidence: ["证据1", "证据2"]
    - step: "业务分析"
      reasoning: "{{业务逻辑分析}}"
      assumptions: ["假设1", "假设2"]
    - step: "技术评估"
      reasoning: "{{技术实现评估}}"
      alternatives: ["方案1", "方案2"]
      decision: "{{最终决策}}"
      decision_rationale: "{{决策理由}}"

implementation_hints:
  suggested_architecture: "{{架构建议}}"
  key_components: ["组件1", "组件2", "组件3"]
  technical_constraints: ["约束1", "约束2"]
  integration_points: ["集成点1", "集成点2"]

第四步:A2A协议实施

4.1 Agent间通信协议

# A2A通信协议定义
a2a_protocol:
  version: "1.0"
  message_format: "YAML"
  context_transfer: "full"

message_structure:
  header:
    from_agent: "{{AGENT_ID}}"
    to_agent: "{{TARGET_AGENT_ID}}"
    message_id: "{{UUID}}"
    timestamp: "{{ISO_TIMESTAMP}}"

  body:
    stage: "{{当前阶段}}"
    context: "{{传递的上下文}}"
    decisions: "{{关键决策列表}}"
    artifacts: "{{生成的产物列表}}"
    next_steps: "{{下一步建议}}"

  footer:
    reasoning_trace: "{{推理追溯}}"
    quality_score: "{{质量评分}}"
    confidence_level: "{{置信度}}"

4.2 上下文传递机制

# A2A上下文传递示例代码
class A2AContextManager:
    def __init__(self):
        self.context_store = {}
        self.reasoning_chain = []

    def create_context_package(self, agent_id, stage, context, decisions):
        """创建上下文包"""
        package = {
            'agent_id': agent_id,
            'stage': stage,
            'timestamp': datetime.now().isoformat(),
            'context': context,
            'decisions': decisions,
            'reasoning_trace': self.reasoning_chain.copy()
        }
        return package

    def transfer_context(self, from_agent, to_agent, context_package):
        """传递上下文到下一个Agent"""
        self.context_store[f"{from_agent}_to_{to_agent}"] = context_package
        self.reasoning_chain.extend(context_package.get('reasoning_trace', []))

        # 记录传递日志
        self.log_transfer(from_agent, to_agent, context_package)

    def get_context_for_agent(self, agent_id):
        """获取Agent的上下文"""
        relevant_contexts = []
        for key, context in self.context_store.items():
            if agent_id in key:
                relevant_contexts.append(context)
        return relevant_contexts

第五步:执行模式配置

5.1 交互式模式配置

# interactive模式配置
execution_mode:
  type: "interactive"
  user_confirmation_required: true
  step_timeout: 300  # 5分钟

interaction_points:
  - stage: "需求分析"
    action: "确认需求理解"
    prompt: "我理解的需求是:{{需求摘要}},是否正确?"

  - stage: "架构设计"
    action: "确认技术方案"
    prompt: "建议的技术架构:{{架构描述}},是否采用?"

  - stage: "代码生成"
    action: "确认实现方案"
    prompt: "将要生成的代码结构:{{代码结构}},是否继续?"

user_interface:
  confirmation_style: "detailed"
  progress_display: "real_time"
  error_handling: "interactive_retry"

5.2 静默模式配置

# silent模式配置
execution_mode:
  type: "silent"
  auto_decision: true
  quality_threshold: 0.8

auto_execution_rules:
  requirement_confidence_min: 0.9
  architecture_compliance: "strict"
  code_quality_threshold: 0.85

fallback_conditions:
  - condition: "confidence_below_threshold"
    action: "request_human_review"
  - condition: "multiple_valid_options"
    action: "choose_highest_rated"
  - condition: "technical_constraint_violation"
    action: "modify_design"

第六步:质量保证机制

6.1 推理质量评估

# 推理质量评估器
class ReasoningQualityAssessor:
    def __init__(self):
        self.quality_metrics = {
            'completeness': 0.0,
            'consistency': 0.0,
            'feasibility': 0.0,
            'traceability': 0.0
        }

    def assess_reasoning_quality(self, reasoning_chain):
        """评估推理质量"""
        scores = {}

        # 完整性评估
        scores['completeness'] = self._assess_completeness(reasoning_chain)

        # 一致性评估
        scores['consistency'] = self._assess_consistency(reasoning_chain)

        # 可行性评估
        scores['feasibility'] = self._assess_feasibility(reasoning_chain)

        # 可追溯性评估
        scores['traceability'] = self._assess_traceability(reasoning_chain)

        overall_score = sum(scores.values()) / len(scores)

        return {
            'individual_scores': scores,
            'overall_score': overall_score,
            'recommendations': self._generate_recommendations(scores)
        }

    def _assess_completeness(self, reasoning_chain):
        """评估推理完整性"""
        required_elements = ['problem_understanding', 'alternatives', 'decision', 'rationale']
        present_elements = sum(1 for step in reasoning_chain
                              if any(elem in str(step).lower() for elem in required_elements))
        return present_elements / len(required_elements)

6.2 文档验证机制

# 文档验证规则
validation_rules:
  yaml_syntax:
    required: true
    validator: "yamllint"

  schema_compliance:
    required: true
    schema_file: "schemas/context_schema.json"

  content_completeness:
    required_fields:
      - "project_info"
      - "tech_stack"
      - "domain_knowledge"
      - "reasoning_patterns"

  reasoning_quality:
    min_score: 0.7
    auto_assessment: true

quality_gates:
  - gate: "baseline_completion"
    criteria:
      - context_base_exists: true
      - reasoning_baseline_exists: true
      - domain_knowledge_complete: true

  - gate: "requirement_analysis"
    criteria:
      - ears_requirements_valid: true
      - bdd_scenarios_complete: true
      - cot_reasoning_traceable: true

使用场景和工作流程

场景1:探索式需求分析

# 启动需求探索流程
claude "我要启动ContextDev的需求探索模式,目标是开发一个电商系统"

# agent-1响应示例
"我来帮您明确电商系统的具体需求。请告诉我:
1. 目标客户群体是什么?(B2B/B2C/C2C)
2. 主要销售什么类型的商品?
3. 预期的用户规模和交易量?
4. 是否需要移动端支持?
5. 有哪些特殊的业务流程要求?"

场景2:明确需求实施

# 直接进入实施阶段
claude "开发一个培训管理系统,包含课程管理、学员管理、考试系统、证书颁发功能,基于JeecgBoot框架,支持多租户"

# agent-2响应示例
"我理解您需要开发一个培训管理系统,核心功能包括:
- 课程管理:课程创建、分类、排课
- 学员管理:注册、学习进度跟踪
- 考试系统:试题管理、在线考试、成绩统计
- 证书颁发:证书模板、自动颁发
- 多租户支持:数据隔离、权限管理

技术栈:JeecgBoot + Vue3 + MySQL
开始执行7-Agent协作链..."

最佳实践建议

1. Context Engineering最佳实践

  • 知识建模:建立完整的业务领域知识图谱
  • 推理模式:积累可复用的推理模式和决策模板
  • 文档一致性:保持文档格式和结构的一致性
  • 版本管理:使用Git管理Context文档的演进

2. Agent协作最佳实践

  • 明确职责边界:每个Agent有清晰的职责范围
  • 标准化接口:使用统一的A2A通信协议
  • 质量把关:设置质量门禁和验证机制
  • 异常处理:建立异常情况的处理流程

3. 代码生成最佳实践

  • 模板驱动:使用高质量代码模板
  • 增量生成:支持增量式代码生成和优化
  • 质量保证:集成代码质量检查工具
  • 测试覆盖:自动生成单元测试和集成测试

故障排除

常见问题解决

MCP服务连接失败

# 检查MCP服务状态
claude mcp list

# 重新配置MCP服务
claude mcp remove superdesign
claude mcp add superdesign "node /path/to/superdesign-mcp-claude-code/dist/index.js"

Agent执行超时

# 调整执行超时配置
execution_mode:
  type: "interactive"
  step_timeout: 600  # 增加到10分钟

推理质量不达标

# 重新评估推理质量
assessor = ReasoningQualityAssessor()
result = assessor.assess_reasoning_quality(reasoning_chain)
if result['overall_score'] < 0.7:
    # 触发人工审核
    request_human_review()

这套Context Engineering AI编程系统通过系统化的方法论和工具链,实现了从需求到代码的完整AI驱动开发流程,特别适合复杂业务系统和企业级应用开发。

需要帮助?

如果您在使用过程中遇到问题,请联系我们的客服: